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Using Fefferman's analysis of the quantum electron-proton gas, we give a 
rigorous proof of ionization equilibrium in this system. Ionization equilibrium 
phases are obtained as low-density and low-temperature limits, letting the 
chemical potential #(T) approach the ground-state energy of the hydrogen atom 
as the temperature T tends to zero. The rate of ionization is determined by the 
slope of #(T) at T = 0  and is correctly given by the Saha formula. We also 
discuss a simpler model where a single quantum particle interacts with a 
classical gas of hard spheres. 

KEY WORDS:  Ionization equilibrium; Saha formula; Coulomb systems; 
dilute gases. 

1. INTRODUCTION AND STATEMENT OF RESULTS 

In a beautiful piece of work, Fefferman (1'2) has shown that a system of 
protons and electrons behaves as a gas of independent hydrogen atoms in 
a suitable low-density and low-temperature regime provided that an 
optimal form of the lower bound for the stability of matter holds. Let /z 
be the chemical potential associated with the total number density p and 
- E a  ( E a > 0 )  the ground-state energy of the hydrogen atom. Fefferman 
proves that if/z is fixed slightly above - Ea, the equation of state is that of 
a perfect gas of hydrogen atoms in their ground state when the temperature 
is small enough. On the other hand, if kt is chosen strictly less than - E a  
and T ~ 0, the system will behave as a free gas of noninteracting protons 
and electrons. 2 This paper is concerned with the behavior of the Coulomb 
gas at the borderline between these two situations: we show that if one 
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2 Lebowitz and Penna c3) (and Hughes (4)) establish that this is the case when # ~ - ~  and T 
is fixed. 
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lets /~ tend to - E ~  in the (#, T) plane linearly with T [-i.e., # (T)=  
- E~ + a T +  o(T)-], one obtains a number of other equilibrium phases, the 
ionization equilibrium phases, which interpolate continuously between the 
free proton-electron gas and the pure atomic phase as a ranges from - 
to +oo. 

In the standard thermodynamic treatment of equilibrium ionization, ~5) 
one uses a chemical picture where the unbound electrons (e) and protons 
(p) and the atoms (a) are considered as different species with number den- 
sities p~, pp, and Pa (Pp = Pe by neutrality). Then the ionization equilibrum 
phases are characterized by their degree of ionization 

De c~ = - - - ,  04c~<1  (1.1) 
Pe+Pa 

Assuming that each species behaves as a perfect gas, one has for the 
equation of state 

kB T -  Pe + Pp + Pa = P (1.2) 

where P is the pressure and p = p~ + pp + 2p~ is the total number density 
of protons and electrons. Applying the law of mass action to the reaction 
e + p ,--, a, one derives the Saha equation for thermal ionization expressing 
c~ in terms of pressure and temperature: 

[ p [ 2rch 2 ~3/2 \kBT]J( Ea ~-1/2 
~(P, T)-- 1 + k ~ ~ )  exp (1.3) 

where rh is the reduced mass of the hydrogen atom. 
f2 Let H NM be the Hamiltonian of N electrons and M protons in a 

region f2 with Dirichlet conditions at the boundary of f2. The electrons and 
the protons have, respectively, charges (e, - e )  and masses (ms, rap), and 
they obey Fermi statistics. Here we neglect the spin of the electron, since 
it will play no role in the present situation. The corresponding grand- 
canonical partition function with chemical potentials (#2, kip) = 
(# + v, # - v) and inverse temperature/~ = (kB T) -1 is 

Z(/~,v,/~,f2)= ~ ZN, M(#,V, fl, f2) (1.4) 
N,M=0 

ZN, M(#, V, /~, 12)= e CEu(N+ M)+ v(N- M/l Tr e -~H~M (1.5) 

where the trace is taken on the space L2NM((2) of square-integrable 
functions antisymetric in the electron and proton coordinates 
[Zo, o(kt, v, fl, s = 1 ]. 
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The theorems on the thermodynamic limit C6) ensure that the infinite- 
volume pressure and number density 

lim 1 tiP(#' f l )=  lal ~ o  ~ l n  Z(/~, v, fi, O) (1.6) 

1 
p(#, fl) = lim ( N +  M)(# ,  v, fi, t2) (1.7) 

exist and are independent of the projection v of the chemical potential 
(#e, #p) on the charge vector ( e , - e ) .  In (1.7), ( . . - ) ( # ,  v,/~, ~ )  is the 
grand-canonical average with respect to H a NM" 

The stability assumption of Fefferman is 

HONM >~ --K(N + M-- 1) (1.8) 

with 0 < K <  Ea for N +  M >  2 [-see ref. 2 for a discussion of the validity of 
(1.8)]. Our result is formulated in the following theorem. 

Theorem 1. Set 

~(fl) = -E~+ off 1 + o(fl-1), - o o  <~r < oo (1.9) 

and assume that (1.8) holds; then 

lim /~P(#(fl)' f l ) -  1 + ~  (1.10) 
~ ~ p(~(/~),/~) 2 

with 
(memp)3/4 ]-1 

= L ( ~  +---g~,)~/~ e~- + 1_ (1.11) 

We add that the case where / l ( f l ) = - E  a + g(fl) with g ( f l ) ~  0 but 
f lg(f l )~ +oo (resp. - o o )  as f l ~  +oo gives the value 1/2 (resp. 1) for the 
limit (1.10). This means that s = 0 ,  full binding (resp. ~ =  1, full dissocia- 
tion), and corresponds to or-- oo (resp. eT= - o o )  in (1.11). 

As in Fefferman's work, one calculates explicit lower and upper 
bounds for the partition function (1.4), which have the structure of that of 
a mixture of three perfect gases of electrons, protons, and hydrogen atoms 
with number densities 

=( mE ~3/2e13(~+v, 
P~ \2nflh2J 

= ( mp ~3/2 e a(*'- v) (1.12) 
Pp \2n~hiJ 

=(me+mr] ~/~ 
P~ \ 2n/~h 2 ) e~{2"+~~ 
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In (1.12}, ~t =/~(/3) is given by (1.9) and v is set equal to 

v(/3) = 4-~ In m----eP me ( 1 . 1 3 )  

to ensure the neutrality Pe = Pp. 
The lower bound (Section 2) is a modification of the subdomains 

inequality of Lieb and Lebowitz including nonneutral balls, while the 
upper bound (Section 3) is essentially that proven by Fefferman. With the 
help of these bounds, one finds that the pressure (1.6) and the number 
density (1.7) are asymptotically of the form 

f l P ( # ( f i ) , / 3 ) = ( P e + P p + P ~ ) I I + O ( ~ ) I  

P(#(/3), /3) = (Pc + Pp + 2Pa) 1 + O 

a s  fl ---+ o0.  

(1.14) 

(1.15) 

The result of the theorem follows immediately if one inserts the explicit 
formulas (1.12), (1.9), and (1.13) in (1.14) and (1.15). Moreover, one 
checks that the coefficient c~ in (1.11) is also expressed by the limit 

c~ = lim 1 +/3P(#(/3),/3) e/~s~ (1.16) 
,g~oo 

so justifying the Saha equation (1.3) in the asymptotic regime (1.9). 
During the completion of this work, Conlon et al. {7) published an 

article generalizing the results of Fefferman by different methods. They 
show that for fixed, negative It and/3 ~ ~ ,  a system of nuclei end electrons 
behaves as a dilute gas of atoms or molecules of various kinds, depending 
on the choice of It. The function defined by 

y(I t )=  lim /3P(It,/3) (1.17) 
~ o~ p(It,/3) 

is in general discontinuous when It is varied from a value selecting certain 
types of complexes to values corresponding to other types. In (1.17), for 
several species of charged particles, p(It,/3) is the total number density of 
nuclei and electrons, and It is the component of the chemical potential 
vector orthogonal to the charge vector. For instance, in the present case, 
y(#) = 1 if # < - E a  (fully dissociated phase) and y(#) = 1/2 if # is slightly 
above - E a  (atomic phase). However, Theorem 1 shows that the ionization 
equilibrium phases interpolate continuously between these two situations 



Ionization Equilibrium 623 

by letting # approach - E ~  in various directions in the (/z, T) plane. In the 
general case, one can expect a similar description of the phase coexistence 
between different sets of atomic or molecular complexes when one lets tt 
tend to a point of discontinuity of y(it) in various directions in the (it, T) 
space as T ~ 0 .  The algebraic error terms in (1.14) and (1.15) could 
probably be improved to exponentially small ones with the techniques of 
ref. 7. 

In Section 6, we present results on ionization equilibrium obtained in 
a simpler model/s) The model consists of a single quantum particle interac- 
ting with a gas of classical hard spheres by means of an attractive short- 
range potential. One can then investgate the low-density and low-tem- 
perature behavior of the system by activity expansions. In the same regime 
as in (1.9), we show that, when a stability condition analogous to (1.8) is 
satisfied, the ionization probability for the quantum particle approaches a 
well-defined limit ~, 0 < a < 1 (the Saha coefficient). This particle is found 
to be in a statistical mixture of a free state and a bound state with weights 
respectively equal to 7 and 1 -  ~. While this model is oversimplified with 
respect to the real electron proton gas, the main features are qualitatively 
the same in the two situations. Moreover, this simpler model may be of 
interest to treat more difficult questions, such as the first low-density 
corrections and the broadening of spectral lines. Details and proofs can be 
found in ref. 8. 

2. THE PARTIT ION F U N C T I O N  FOR A SINGLE BALL 

Here and in the next sections, we follow Fefferman's analysis (1) very 
closely and only indicate places where modifications of his proof occur. We 
keep the same notation as in ref. 1. More details can be found in ref. 9. 

The general strategy is to decompose the region s into subdomains, 
mainly balls B of radius R. The balls must have a size, depending on the 
temperature, such that if they contain anything, this will most likely be one 
electron, or one proton, or a single hydrogen atom. 

Let 

ZN, M(~, V, fl, B) 
PN'M(B)-- Z(I~, v, fl, B) (2.1) 

be the probability of finding N electrons and M protons in B. We will make 
a choice of/~, v, and B such that for/~ large 

Po, o(B) >> P~,o(B) ~- Po,~(B) ~- P~, ~(B) >> PN, M(B) 

for all (N, M ) #  (0, 0), (1, 0), (0, 1), and (1, 1). 

(2.2) 

822/60/5-6-7 
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One has the following estimates. There exist (small) positive numbers 
c, Cl, and c 2, with cl > c2, such that for any R with 

e ~C2 ~< R .G< e ~cl (2.3) 

and 3 large, 

{ 3 l'2}ve } Z,.o(#,v, fl, B)=p~lB] 1-~(2~z)  / ~ [ 1 + o ( 1 ) ]  (2.4) 

= p~ IBI [1 + O(e-C~)] 

Zo.~(#,v, fl, B)=pplB[ 1 - ~  (2~)1/2-~ [1 + o(1)] (2.5) 

=pp IB][1 +O(e-C~)] 

ZI,,(#, v, fl, B) = Pa IBI [1 + O(e-C~)] (2.6) 

The densities Pe, Pp, and Pa are defined as in (1.3) for general values of # 
and v, and 2 s = (flh2/rns) m, s = e,p, are the thermal wavelengths. 

Equation (2.6) is established in Section 4 of ref. 1 (at this point, the 
error term is indeed exponential). Equations (2.4) and (2.5) follow from the 
asymptotic properties of the eigenvalues of the Dirichlet Laplacian A B, (I~ 

Trexp \~ -~ /  [B[-~--~ ]cOB] + o  , t--*0 (2.7) 

By scaling, one has 

Tr exp(--flH~o) = Tr exp I ( ~ ) 2  @ ]  

with B1 the sphere of radius 1, and 2~/R--*O as fl ~ oo when (2.3) holds. 
Thus, (2.7) can be written as 

Tr exp(_ f lHfo )  1 IB[{ 1 3 ~ } , --.(25)3/2 )3e --~ (25) 1/2 [1 + o(1)J (2.8) 

Taking (1.5) and (1.12) into account, this leads to (2.4), and (2.5) is 
obtained in the same way.  

The reason for keeping explicitly the surface term in (2.4) and (2.5) is 
that it shows immediately the inequality (fl sufficiently large) 

Zi,o(#, v, fl, B) Zo,,(#, v, 3, B) 
<~ (2.9) 

P~ Pp 
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due to the fact that me <mp. The inequality (2.9) holds more generally for 
an fixed B and all fi as a consequence of the monotonicity of the function 
t 3/2 Tr exp(t AB/2) (see Appendix). 

From now on, we set 

= 3 in m__s and ff = - - E  a + a f t -  1 -t- o(f1-1) v 
m e 

as in (1.13) and (1.9). Hence one has pe=pp, giving asymptotically the 
same probability for finding a proton or an electron in B, and (2.9) reduces 
to 

Zl,o(#, v,/~, B) ~< Zo,1(~, v,/~, B) (2.10) 

Moreover, all terms (2.4)-(2.6) are of the same leading order 
fi-3/2 exp( - f lEa)  ~ 1. The establishes the first part of (2.2). 

The relations (2.4)-(2.6) imply 

1 + Z,,o(,U, v,/~, B)+  Zo,,(~, v,/~, ~ ) +  Z1,1(~, v,/~, B) 

= 1 + ( p e + p p + P . ) l B I [ 1  +O(e-C~)] 

= exp{(pe + pp + pa)lBI [1 + O(e-eP)] } (2.11) 

and since Pe = Pp, we have the same estimate with Zo, l(/~, v, fl, B) replaced 
by Zl,o(~, v, fl, B) in the left-hand side of (2.11) or vice versa. 

The contribution of all terms (N,M) in (1.4) with N # 0 ,  1 and 
M:~0,  1 is 

~. ZNy(#, V, fl, B ) =  Z,.,(#, v, fl, B) O(e -c~) (2.12) 
N,M~0,1 

This estimate is obtained in Section 4 of ref. 1 with v = 0 and for all # less 
than - Eo + 6, 6 small and positive, as a consequence of the stability condi- 
tion (1.8). It is easily checked that it holds also with v given by (1.13) 
because v is O(fl-~). So (2.12) is true in the present case. Taking now into 
account (2.4)-(2.6) and the fact that ZN.M(#,V, fl, B), (N,M)= 
(1, 0), (0, 1), and (1, 1), are of the same order, we conclude from (2.12) that 
the second part of (2.2) is satisfied. Moreover, we can write (2.12) in the 
form 

2 ZN, M(]J, V, fl, B)  = (Pe + Pp + P a ) l B I  O(e -cB) ( 2 . 1 3 )  
N, Mv~O,1 

This combined with (2.11) gives finally 

Z(#,v, fl, B)=exp{(pe+pp+Pa)lBl[l+O(e-Ca)]} (2.14) 
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for any ball satisfying (2.3), v, # given by (1.13) and (1.18), and /3 large 
enough. 

3. LOWER BOUND FOR THE PARTITION FUNCTION 

To obtain lower and upper bounds for the partition function (1.4) 
with an arbitrary large domain f2 (say If2l >> e c/3 for some large, positive 
constant C), one decomposes it into a disjoint union of balls B~ with radii 
satisfying the condition (2.3) (a "swiss cheese"), plus a remainder which is 
O(e-Ca)lf2 I. We refer to Section 6 of ref. 1 for the explicit construction of 
this "swiss cheese." The method to find a lower bound for Z(#, v,/3, f2) is 
adapted from ref. 6 to account for nonneutral balls. 

Proposition 1. Let # = #(fl) be given by (i.9), 

3 lnm me 
and take a collection of disjoint balls B1 ..... Bk, with radii e c1~ < R~ < e C~, 
such that their union is included in f2. Then, for fl sufficiently large, we 
have 

k 

Z(#,v, fl, f2)>jexp{(pe+Pp+pa) ~ IB~l[l+O(e-C~)]} (3.1) 
i=1 

The proof of the proposition relies on the inequality 

Z(#,v,~,(2)>/ 2 [hlZNt, M~(#,V, fl, Bi) ] 
(NI,MI)...(Nk,Mk) i= 
x exp[ -flV(N~, M1,..., Nk, Mk)] (3.2) 

where 

k (N, MI)(Nm Mm) 
V(N1, M1,..., Nk, Mk) = e 2 ~ (3.3) 

l<rn ] r / - - r m [  

is the interaction between the balls ai  of center r i ,  i = 1 . . . . .  k .  The inequality 
(3.2) is the Lieb and Lebowitz subdomains inequality for a collection of 
balls Bi having total charge e(Ni-  Mi). (6) 

Proof of Proposition 1. For each set I _  {1,..., k} of cardinality [I1 
and complement U, we define two sets of sequences. The first one is com- 
posed of the sequences of couples (Ng, Mi) with i e I C and (Ng, M~) taking 
values in {(0, 0), (1, 1)}. The second one is composed of the sequences of 
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couples (Ni, Mi) with i e I  and (Ni, M~) taking values in {(1, 0), (0, 1)}. 
These two sets of sequences are denoted, respectively, by So(U) and St(I). 
If I c = ~ or I =  ~ ,  then we define So(U) = ~ or $1(I) = Z .  

We note that in (3.2) the inequality is preserved if we restrict the sums 
to the values (0, 0), (1, 0), (0, 1), (1, 1) for (Ni, M~), i =  1 ..... k. Thus, by a 
rearrangement of the restricted sum, we get 

z(~, v,/~, ~) 

>1 Z Z Z [AZN,,M,(I~,V, fl, Bi) ] 
I ~ _ { 1 . . . k } o r I = ~  SO(F ) SI(1 ) i=  

x exp[--flV(N1, M1 ..... Nk, Mk)] 

l ~ _ { i . . . k } o r l = ~  SO(F) i 

• 2 I~ZNi,Mi(~,v, fl, Bi)]expE--flV(N1, M1,'",Nk, Mk)] 
SI(I ) L i e I  

(3.4) 

The inequality (3.4) is valid for any fl, #, v and any collection of disjoint 
balls included in O. Now, we specialize it to the conditions of the proposi- 
tion and we apply the result (2.10) of Section 2, 

z(~, v,/~, ~) 

>~ ~ ~ rI-I ZN, M,(#,v, fl, B,)I 
I ~ { 1 . . . k } o r I = ~  SO(U ) i c Lel J t-ieI 

x ~ exp[-flV(N1, M1 ..... Nk, Mk)] 
s i f t )  

(3.5) 

Let us remark that for a fixed I and a fixed sequence in So(U) we have 
from the formula (3.3) 

2 Sa(t) 
V(N1, M 1 ..... Nk, M~) 

V e 2 V (N,-- Mt)(N.. -- Mm) 
SI(I)/" ( l < m ) e I  ~ Ir~- rml 

e 2 

= ~ Irt-rm[ ~ ~ ( N t - M t ) ( N m - M m ) = O  
( l < m ) e l  S l ( l \ ( l ,m))  Sl(l, rn) 

(3.6) 
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The last equality follows from the explicit summation over the four sequen- 
ces of Sl(l, m). The convexity of the exponential together with (3.6) implies 

~, exp[-/3V(N1, M1,..., Nk, Mk)] >~2 Itl (3.7) 
s~(/) 

From (3.5) and (3.7) we have 

z(~, v, fl, o)/> y~ E 1-I z~,,~.(~, v,/~, B,) 
I_~ {1...k} o r I = ~  S O (U )  i ~ I  c 

x Y FI Z,,o(~, v, ~, B,) 
SI(I)  i ~ I  

k 

-- I-I I-1 + Z,,o(~, v, fl, B,) + Z~,o(~, v, fl, Be) 
i = 1  

+ z , , , (~ ,  v,/3, B,)]  (3.8) 

Then the result (3.1) of the proposition follows immediately from (2.11) 
and the remark following (2.11). 

Since the balls cover 12 up to a volume O(e-Ca)lO I, we get finally 

Z(#, v, fl, t2)>>.exp{(pe+pp+pa)lf2l[1 + 0(e-C~)] } (3.9) 

4. UPPER B O U N D  FOR THE PARTIT ION F U N C T I O N  

We recall some basic estimates proven in ref. 1. The first one is an 
1"2 inequality between the full Hamiltonian H NM and an effective temperature- 

dependent hamiltonian t) essentially obtained by switching off the Coulomb 
interaction between particles belonging to different balls /-Eq. (7.9) of 
ref. 1 ] 

b~< (1 + e -ca ) H ~ + Ce-C~(N + M) + ~ V (4.1) 

In (4.1), c, C are volume and temperature independent constants (which 
may have different numerical values at different places). V is a potential 
energy accounting for the missing part of the interaction in b: it 
corresponds to a locally regularized Coulomb potential due to smeared 
charges in the balls. We refer to ref. 1 for a complete description of D and 
V. Since t? pertains to uncoupled balls, the corresponding partition function 
can be estimated by a product of partition functions for the balls, up to a 
small contribution due to the fraction of I2 not covered by the balls. Thus, 
in the ionization equilibrium regime defined by (1.9) and (1.13), one finds 
from (2.14) 
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Tr exp[ - f ib  + flU( N +  M) + f l y ( N -  M)]  

<~ l-[ Z(#, v, fl, Bi) exp[pa I,(21 O(e c~)] 
i 

t ( P e + P p + P a ) ~ l B i [ [ l + O ( e  c/~']texp[pal/21 O(e-C~)] =exp  
t i ) 

= exp{(pe + pp + pa)[/21 [1 + O(e ~) ]  } (4.2) 

Moreover, the following estimate [Eq. (7.6) of ref. 1 ] shows that, on 
the average, V becomes negligible at small temperatures and densities, 

C 
( V)(#,  v, fl, Q) <~ -~ ( N +  M) (# ,  v, fl, Q) + Ce cl~(p e + pp + Pa) IQI (4.3) 

The proof of (4.2) and (4.3) is exactly as in ref. 1 with the trivial adjunction 
of the v component  of the chemical potential. Since (4.3) is the estimation 
of an average (i.e., involving a division by the partition function), it 
requires also the use of the lower bound in the form (3.9). 

We write now (4.1) as 

flD - fll~(N + M )  - f l y ( N -  M )  

<. fiH ~ - tiff(N+ M) - f i~ (N-  M) + CV (4.4) 

with fi, fi, and ~ defined by 

fl=fl(1 + e  -c~) 

fi~= flv 

(4.5) 

Clearly, if/z(fl) and v(fl) belong to the class of functions (1.9), (1.13), the 
same is true for the functions #(fl) and ~(fi) given by (4.5). Moreover, 
denoting by #s, s=e ,  p, a, the densities ps in (1.12) written for fl, 17, and ~7, 
one verifies that 

p s = f i s [ l + O ( e  c~)] (4.6) 

Finally, using (4.4), (4.2), (4.6), and the Peierls-Bogoliubov inequality 
leads to 
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Z ( fi, ~ , fi, 12) ~< exp[C(  V } ( fi, ~ , fi, 12)] 

x exp{(fi e + tip + ft,) 1121 [1 + O(e-Cr } 

~<exp -fl  < N + M >  (fi, ~, fi, Q) 

xexp{(fie+fip+fia) 11211-1+O(e c~)]} (4.7) 

where the second inequality (4.7) follows from (4.3) written for fl,/i, ,7. 
In the next section, we show that the expected value of the total 

number of particles is 

( N + M } ( f i ,  g, fi, 12)=(fie+fip+Rfi,)1121[l+O(fi-1/2)] (4.8) 

The results (4.7), (4.8), and (3.9) imply the asymptotic expressions (1.14) 
and (1.15) of the pressure and the number density for the proton-electron 
system in the thermodynamic limit. This proves Theorem 1. 

5. E S T I M A T E  OF O B S E R V A B L E S  

To estimate the average value of an observable A, we use again (4.4) 
with the term - tA (t small positive or negative) added on each side of the 
inequality. Then, we apply the Peierls-Bogoliubov inequality to let the 
average value of t A - C V  appear, and use (4.3) together with the lower 
bound (3.9). This leads to 

exp[ t (A  }(fi, ~, fi, 12) 

~ exp [ ~ - ( N + M } ( f i ,  g, fi, 12)l 

Tr exp[ - f i b  + tA + Bl~(N + M) + B y ( N -  M)]  
x exp{(fie+fip+fia) 112111 + O(e-Ct~)] } (5.1) 

The choice A = N + M amounts obviously to a shift of the chemical poten- 
tial # to / l  + tiff in the rhs of the numerator in (5.1): Since this new chemi- 
cal potential still belongs to the class of function (1.9), we can apply the 
inequality (4.2) with the appropiate changes in the densities (1.12) 

Tr exp[ - f i b  + t(N + M) + fl#(N + M) + f l y (N-  M)]  

<~exp{(e'p++dpp+e2epa) 112111 + O(e-C~)] } (5.2) 

From (5.1), (5.2), and (4.6), we have 
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expI(' 
<- e x p {  t(fie + tip Jr- fia) [ff~] 

x [ l + O ( I t l ) + O ( I t l e  ce) + O(e -~) ]}  (5.3) 

Taking successively t = _+/7 1/2 (this is the optimal choice), we obtain the 
desired result (4.8). 

To estimate the total kinetic energy 

h 2 h 2 
Ka= - - -  A e -  Ap 

2rn~ 

(with Ae, Ap, the Dirichlet Laplacians for electron and proton coor- 
dinates), we note that the modification of the masses 

rn , -*m, ( t )=( l+ t ) - l rn , ,  s = e , p  (5.4) 

the addition of a kinetic energy term to the total corresponds to 
Hamiltonian 

H~N M t~ "+ H NM q- t K  a (5.5) 

Denoting by b(t) the effective Hamiltonian t) with the masses me(t) and 
mp(t), the inequality (4.4) becomes 

ft)(t) - f# (N  + M) - f v ( N -  M) 

< < . f l ( H a + t K ~  (5.6) 

[the estimate (4.1) is uniform with respect to the masses in a neighborhood 
of (mr, rap)]. In the same way as for (5.1), we deduce with help of the 
Peierls-Bogoliubov inequality 

e x p [ - f l t (  Ka)(F t, v, L s 

~exp ~ < N + M ) ( f i ,  g,/7, f~) 

Tr exp[ -fill(t) + f#( N + M) + f l y (N-  M)]  
x exp{(~ + r + ~a)[QI[1 + O(e-CP)]} (5.7) 

We can now apply the inequality (4.2) to the numerator in the rhs of (5.7) 
with the densities ps(t), s= e, p, a, corresponding to the modified masses 
(5.4) 

Tr exp[ -Bib(t) + fl~( N + M) + f ly (N-  M)] 

<~exp{[pe(t)+pp(t)+p,(t)] lf2l[1 + O(e-C~)] } (5.8) 



632 Macris and Martin 

Since the ground-state energy E~ of the hydrogen atom is transformed to 
Ea(1 + t) -~, one obtains from (1.12) 

ps(t)=ps[l+O(ltl)],  s = e , p  

Pa(t) = Pa exp{ [ --/3tE, + 0(/3t2)3 [1 + O( Itl )3 } (5.9) 

Choosing t =  +/3 3/2 in (5.9) and using (4.6) and the fact that ( N + M )  is 
of order Pa [f2[, we see that (5.7) reduces to 

exp[ +_fl-1/Z(K~ ~<exp{ +_fl-1/2fiaEa[1 + O(fl-i/2)]} (5.10) 

Hence 

(K~)(~, v,/3, ~)=pa I~1Eal-1 + 0(/3 1/2)3 (5.11) 

Moreover, one finds by similar arguments that the total energy is 

(H~ v,/3, Q) = -p= [g2l Ea[1 + O(/3-1/2) -] (5.12) 

Thus, in the limit fl ~ ~ ,  the total energy is just the ground-state energy 
of the atoms, as it should be. It is interesting to remark that in the same 
limit, the total kinetic energy does not vanish, but is the quantum internal 
kinetic energy of the atoms. It is indeed well known for the hydrogen atom 
that this quantity is opposite in sign to the ground-state energy. 

6. A S I M P L E  M O D E L  

We consider a single quantum mechanical particle of mass me (the 
"electron") in thermal equilibrium with a classical gas of hard spheres with 
radius d and mass mp (the "impurities"). The electron interacts with each 
of the impurities by means of a spherically symmetric attractive potential 
V(x). The potential V(x) is nonpositive, integrable at infinity, and can have 
a square integrable singularity at x = o. 

If there are no impurities, the energy of the electron H ~  
- (h2/2me) A is purely kinetic, where A is the Laplacian. For a configuration 
of n impurities at rl,.. . ,r . ,  Iri-rjl>2d, i ~ j = l , . . . , n  and n>~l, the 
Hamiltonian of the electron 

H"(rl ..... r ,)  - A + V(r j -  x) (6.1) 
2me j= 1 

has a finite number of bound states of finite multiplicities with negative 
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energies and an absolutely continuous spectrum on [0, oe ]. In particular, 
the one-impurity Hamiltonian is unitarily equivalent by translation to 

/i2 
H ' ( o )  = - - -  d + V(x) (6.2) 

2me 

which has a nondegenerate ground state with energy - E a  (Ea> 0) and 
wave function @a(X). In ref. 8, we prove the following stability estimate, 
which is the analogue of the assumption (1.8) of Fefferman for Coulombic 
matter. 

Proposition 2. For d large enough, there exists K independent of 
n and r 1,..., rn, n ~> 2, such that 

0 < K < E a  (6.3) 

and 

Hn(rl,...,rj>~-Kn for n~>2 and Iri-rj l>~2d, iC j  (6.4) 

The important point in this form of the inequality is that the stability con- 
stant K can be chosen strictly smaller than the binding energy E,  of the 
atom. We wilt come back to this point at the end of this section. 

In order to properly define the ionization rate in this model, we intro- 
duce the grand canonical average pA(dE, fl, I~) of the energy distribution of 
the electron in the volume A at temperature fl-1 and chemical potential #. 
It is conveniently defined by its Laplace transform 

i 
o o  

gA(< e  EpA(dE, fl, 

s fl, #) 
= ( e x p ( - 2 H n )  >" (f l ' /~)-  •A(2 = 0, fl, p) (6.5) 

where 

3A(2, fl, #): exp[- (fl + 2)H ~ ] 

+ k -~. \~] JAdr''''fA dr. 
n = l  

x Tr  e x p [ - ( f l + 2 )  H~(r,,..., rn)] f l  z ( r , - r j  (6.6) 
i < j  

and Z A ( ) , = 0  , fl, kt) is the grand canonical partition function. In (6.6), 
HA(r 1 ..... r ,)  is the Hamiltonian (6.1) with Dirichlet conditions on the 
boundaries of A and z ( r )=  1, Jr] ~>2d; z ( r ) = 0 ,  Irl ~<2d. 
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Using (6.4), one can show that gA()v, /3, ~) is represented by tow- 
activity series uniformly convergent with respect to the volume I A] and that 
its infinite-volume limit g(2,/3, #) can be computed term by term. 

Since in infinite space, quantum states for the Hamiltonian (6.1) with 
E > 0  (resp. E < 0 )  represent ionized states (resp. bound states), we define 
the ionization probability ~(/3,/~) [-resp. the binding probability 1 - ~(/3,/~)] 
by the total weight of the positive energy states 

~(/3, # ) =  lim p(dE,/3, #) (6.7) 
g>0 ,8~O 8 

where p(dE, fl, #) is the infinite-volume limit of the energy distribution 
defined by (6.5). 

The main result of ref. 8 is formulated in the following theorem. 

T h o o r e m  2. Let V(x) be in the class of potentials described above 
and the inequalities (6.3) and (6.4) be satisfied; then, for a fixed/~, 

(i~) l i m ~ g ( 2 , / 3 , # ) = l  when / ~ ( - ~ , - E ~ )  

(i2) l i m ~ g ( 2 ,  fl, l~)=e ~m~ when l ~ e ( - E a , - K )  
(ii) If 1~(/3) = -E~ + a/3 -1 + o(/3-1), - ~ < ~ < ~ ,  then 

lira g(A,/3, p ( / 3 ) )=~+(1 -~ )e  ~E" with ~ = r(mp~ 3/2 e ~ + l ] - i  
~ ~ oo L \ m e /  

The cases 01) and 02) correspond, respectively, to full ionization and full 
binding. Indeed, in (il), the energy distribution is concentrated at the edge 
E =  0 of the continuous spectrum, giving lim n ~ ~ ~(fi, #) = 1, while in (i2), 
the distribution is concentrated at - E ~ ,  giving limn~ ~ ~(/3, # )=0 .  The 
case (ii) corresponds to partial ionization with ~ = l i m n ~ ( / 3 , / ~ ( / 3 ) ) ,  
0 <  ~ < 1. It interpolates continuously between full ionization and full 
binding as a is varied from - ~  to + ~ .  

One obtains also that the momentum distribution of the electron 
p(dk, fl, #) tends to 

lim p(dk, fl, p ( f l ) )=~6(k=o)dk+(1-~t ) l~a(k)[2dk  (6.8) 

where ~,(k) is the Fourier transform of the ground s t a t e  ~/a(X).  Thus, when 
~ 0, 1, the electron is found in a statistical mixture of a free (zero-momen- 

tum) state and a bound state. 
We conclude this section with a few remarks. To prove the theorem, 

we represent the quantities of interest by their low-activity series. The nth 
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order term in these series behaves asymptotically for f l ~  oo as the 
Boltzmann weight exp[f l(E,  + #n)] (up to algebraic functions of fl), where 

E n =  - inf infspec H"(r~ ..... r,,) (6 .9)  
rl,"-,rn [ri rjl>~2d, i ~  j 

To obtain a thermodynamic regime where the atom is formed, one must be 
able to find # such that the Boltzmann weight corresponding to a single 
impurity dominates all the others (E 0 = 0, E 1 = Ea) , i.e., 

El-l- # > 0 

E ~ + # > 0 > E n +  

This is possible thanks to the stability 
0 < K < E 1 ) .  Indeed, when (6.3) holds, 
( - El ,  - K), implying obviously 

#n, n~>2 
(6.10) 

estimate (6.3)-(6.4) (En <<. Kn with 
one can choose # in the interval 

En + #n<<.En- Kn <O< Et + # (6.11) 

So the set of inequalities (6.10) can be satisfied. At this point, it is impor- 
tant to note that a repulsive interaction between the impurities is essential. 
For  example, when n = 2, (6.10) holds only if 2E~ > E2. But if one sets 
d =  0 in (6.9), one has 

E2 ~> - i n f  spec H 2 ( O ,  o )  = - E ( 2 )  (6.12) 

where E(7 ) is the ground-state energy of the one-impurity Hamiltonian 
-(h2/me) A+TV(x) with coupling constant 7. Since E(7) is concave, 
E(2)~<2E(1)= -2E1.  Hence, by (6.12), we find 2EI<~E2 when d = 0 .  In 
other words, to observe an atomic phase, the gain in binding energy by 
adding a second impurity must be less than the binding energy of the atom. 
The situation is the same as in Coulombic matter, where the additional 
binding energy to form the hydrogen molecule is less than that of the 
hydrogen atom. In each case a stability inequality with a not too large 
constant ensures suitable values of the binding energies to allow for the 
existence of an atomic phase. This is not possible without repulsive inter- 
actions. If the gas of impurities is a free one, one can even show that En 
is a convex function of n, so there is no value of # such that the Boltzmann 
weight of any finite aggregate is dominant when fl --, oo. 

The ionization equilibrium case [part  (ii) of Theorem 2] occurs when 
the two first terms of the low-activity series (the free-electron and one- 
impurity terms) are of the same order as fl ~ oo. The technical problem is 
to show that the rest of the series is negligible. For  this we establish 
pointwise bounds on the kernels (x lexp(-flHn(rl , . . . , rn))]  y) that are 



636 Macris and Martin 

uniform with respect to the location rl ..... r ,  of the impurities by using 
extensively the theory of Schr6dinger semigroups developed by B. Simon. 
These estimates in conjunction with the standard methods to control the 
Mayer series enable us to prove the theorem (see ref. 8). 

While the physical situations are essentially similar in the model and 
in the full electromproton gas, the treatment of the model is clearly much 
simpler on two main points. First, one does not have to deal with the full 
quantum mechanical N-body problem. Moreover, since the potentials are 
short ranged, the infinite-volume limit can be expressed by low-activity 
expansions, so the detailed configurational analysis of Fefferman required 
by the Coulombic case is not necessary here. 

A P P E N D I X  

Let 12 be a convex set with smooth boundaries in R 3 and A~ the 
Dirichlet Laplacian on 12. Then for all t~ >/t 2 > 0, we have 

t~/2 Tr exp @Lj-R) <<. t3/2 Tr exp ( t-@) (A.I) 

This is easily seen with the help of the functional integral representation of 
exp(tA~/2) in terms of the Brownian-bridge process (m 

1 
t3/2Trexp =(2rc)3/2f drf D~tx~(a,r,t ) (A.2) 

In (A.2), a(s), 0 ~ s ~< 1, is the three-dimensional Brownian-bridge process 
with zero mean and covariance s~(1 -s2) ,  s~ ~< s2, and the Brownian-bridge 
measure Da  is normalized to one. Ze(a, r, t) is the characteristic function 

for the set of paths satisfying r + x/ - /a(s)  e s for all s, 0 ~< s ~< 1. 

Since 12 is convex, r E 12 and r + ~ a(s)~ 12 imply 

y[r + x//~l a(s)] + (1 - 7) r e 12, 0~<7~<1 (A.3) 

Taking 7=  x/~2/,,/-~1, we obtain r + ~ a(s)612, and hence 

ZQ(a,r, tl)<,Z~(a,r, t2), tx>~t2>0, rs12 (A.4) 

The inequality (A.1) follows from (A.4) and (A.2). 
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